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Nonvalidity of the telegrapher’s diffusion equation in two and three dimensions
for crystalline solids
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We use a classical analog of two-dimensiof@D) and 3D quantunB-matrix scattering theory to study
classical mesoscopic diffusion in isotropic, crystalline, solids. The individual collisions include transmission,
reflection, and lateral scattering probabilities. The resulting stochastic process is a second-order Markov pro-
cess in phase space, which is known in the literature ag3?I) persistent random walk. In striking contrast
with the 1D case, in the continuum limit, the 2D and 3D total densidi@sotsatisfy the telegrapher’s diffusion
equation. We explain this fact deriving the anomalous Maxwell-Cattaneo equation in the case of discrete
diffusion processes. We find that inertial memory, giving the forward scattering a preferential direction, breaks
the x-y symmetry.[S1063-651X97)06301-0

PACS numbe(s): 05.40+j, 05.70.Ln, 03.65.Sq

[. INTRODUCTION rectly from the 1D quantumS-matrix scattering theory
[9,10]. Scattering with energies beloftunneling and above
The so-called telegrapher’s equation has recently been the potential barrier are described indistinctly with the trans-
subject of many studies concerning transport properties imission and reflection coefficient3 (R).
fluids and solids. Although well known since the last century The QRW is a coherenthaving interferencediffusive
in electrodynamic$1], the use of the telegrapher’s equation process, where elastic scatterings of wave packets, of con-
in transport theory dates scarcely from 1951, after its derivastant(averagg energy, against a crystalline lattice are con-
tion by Goldstein[2] using a stochastic process called thesidered. In a recent articld 1] it was proved that if a time
one-dimensional persistent random wé&llD-PRW). Its as- average is taken on the quantum probabilities described in
sessment as a transport equation was nicely discussed BRW, the quantum interference contributions can be ne-
Weymann[3] and its applications to a wide variety of prob- glected, and a set of incoherefilassical 1D-PRW equa-
lems have been recently reviewed by a number of authorons are obtained. This quantum-derived incoherent process
[4-6]. In particular, Masoliveet al.[7,8] pointed out that in  describes a succession of 1D classical scatterings in a lattice
two dimensions a persistent random walk describes a motiowhere all particles incident upon any potential barrier are
which in the continuum limit does not obey two-dimensional scattered with forwardtransmissiopand backwardreflec-
the (2D) telegrapher's equation. Furthermore, they conjection) probabilities [T,R), respectively. Conservation of par-
tured that it is not possible to derive the telegrapher’s equaticles demands thaf + R=1. Usually T>R, and this ex-
tion in 2D (or in 3D) by following Goldstein’s procedure presses the inertial memory of particles under scattering.
starting from a persistent random walk and passing to the Assuming the particles to be described only at the mid-
continuum limit. valleys between potential barriers, the quantum-derived clas-
In this paper we explicitly wish to prove this last assertionsical 1D-PRW equations may be rewritten relating the clas-
and furthermore to clearly point out why the Fickian diffu- sical incoming probabilitiesP(x,t) and P,(x+1}t) with
sion ceases to hold true in 2D and 3D. In fact, since théhe corresponding outgoing one®,;(x+1t+1) and
probabilities of making a forward and sideways transition areP»(x,t+1). The subscripts in the probabilities denote the
different with respect to a chosen direction, the probabilitiegdirection of motion(1=right, 2=left). The 1D-PRW equa-
of finding the walker at a certain point in the lattice are nottions become
symmetrical. The continuum limit of 2[8D) persistent ran-

dom walk leads to a diffusive type equation very much like Pi(x+1t+1)} (T R}[Pi(xt) 2.1)
the one derived by Masolivest al.[7,8]. Py(x,t+1) IR T/ Py(x+11))" :
Il THE 1D-PRW MODEL Equation(2.1) describes a classical process where all par-

ticles have the same average speedAx/At. Having con-
Since the pioneering work by Goldstdip] we know that  stant energy, in 1D the velocity has only two values:c.
1D mesoscopic diffusion equations can be obtained using @ihe effect of elastic collisions is simply to change their di-
one-dimensional persistent random wgdk Among the dif-  rections of motion.P(x,t) and P,(x,t) describe the joint
ferent 1D-PRW models present in the literature there is on@robability of finding the particle at positioxat timet with
called quantum random wallQRW) which is derived di- positive and negative velocities, respectively. Thus the 1D-
PRW procesg2.1) describes in phase space a Markovian
random walk withinternal degrees of freedanktach indi-
*On leave from Facultad de Ciencias, UNAM, Meo, 04510  vidual probabilityP,; and P, in Eq. (2.1) is hence asecond-
D.F., Mexico. order Markov proces$4].
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In Eq. (2.1), for arbitrary values ofR and T, the con-
tinuum limit (Ax,At)—(0,0), such thatAx/At=c is kept
constant,does not exist4]. However, the continuum limit

does exist in the particular case of the weak-scattering limit

(WSL) where, besidesAx,At)—(0,0) with Ax/At=c, the
coefficients R,T) have to satisfy the supplementary
conditions: R=At/260~0, andT=1—-R~1, whered is a
constant relaxation time characteristic of the sd#dl

The corresponding equations in the 1D-WSL are

Py 9Py 1

e —2—9(P2—P1), (2.2a
P, o"PZ_ 1 p_p 2.2b
T_CW_Z?( 1—P2). (2.2b

The two equation$2.2) may be rewritten in terms of two
new functions, the density(x,t)=P;(x,t) + P,(x,t) and its
associated current(x,t)/c=Pq(x,t)—Py(x,t); they are
found to be
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whereD=c?6 is the diffusion coefficient. Equatiof2.3a
describes the conservation of mass, and Ef3b the
Maxwell-Cattaneo equatiofil2]. After eliminating the cur-
rentJ in Eqs(2.3) we get a closed equation for the 1D den-
sity, the telegrapher’s equation
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FIG. 1. (a) Input at time €) and(b) output at time(t+1) for a
2D square lattice.

tion of particles demand§+R+2L=1.

In a square lattice we have four probability
densities: P;(X,y,t), P5(X,y,t), P3(X,y,t), andP,(x,y,t),
where the subscripts denote the directions of motitn
=right, 2=left, 3=up, 4=down).

In a single 2D classical scattering process, we can find by
inspection from Fig. 1 the most general relation between
input and output probability densities, namely,

Pix+1yt+n| [T R L L px—1y1
Pax—1yt+1)| | R T L LI Pyx+1y,t)
Pa(x,y+1t+1) L L T RJ|Psxy-11)
Ps(x,y—1t+1) L LR T Ps(x,y+1}t)
(3.1

Likewise, if one does not choose to assume that the randoiotice that in the model described by E®.1), since we

walker moves at constant speed, still further types of evoluhave elastic scattering and every scattering process has the

tion equations are possibfé&3]. same mean free path, made of two displacements each one of
In the next sections we will prove, using the classicalthe same size |Ax|=|Ay|) for input and output respec-

analog of the 2D(and 3D quantum S-matrix scattering
theory, that in 2D(and 3D the resulting equations afe a
2D (3D) PRW stochastic process, affid) in the WSL, in

tively, this implies that the mean collision tim&t is the
same in every scattering process. From a statistical point of
view, Eg. (3.1) describes a stochastic process called 2D-

striking contrast with the 1D case, the diffusion equation forpersistent-random-walk2D-PRW). Notice that this is a

the densityp(X,y,t) is notgiven by the 2D(3D) version of
Eq. (2.9.
That is, at least for our classic&matrix scattering model

secondorder Markov process since at any time one needs to
have two pieces of information, the position and direction of
travel. The symmetry of the transition matrix reflects the

of diffusion, the telegrapher’s equation analogous to Egisotropy of the solid. Eq(3.1) represents a set of recursive

(2.4) is notthe correct equation for describing 2D and 3D
classical mesoscopic diffusion.

Finally, notice that for arbitrary values ofT(R) and
keepingAx?/At=const(the same limit which takes the usual
random walk into a parabolic equatipnve may also take in
Eq. (2.1) the continuous limit. However in doing so we ar-

equations for P; (i=1,2,3,4 whose solution depends
strongly on the initial and boundary conditions.

IV. THE 2D WEAK-SCATTERING LIMIT

In order to get the continuum limit of E@3.1) consider,

rive, the same as in the parabolic equation, at a diffusiors an example, the first equation of the set, namely
process with an infinite propagation speed for diffusion. This

is an unphysical result.

Ill. DIFFUSION IN A 2D SQUARE LATTICE

Pi(xy,t+1)=TP;(x—2y,t) + RP5(x,y,t)
+LP3(x—=1y—1t)+LPy(x—1y+1t).
4.1

To begin with, consider a 2D, isotropic, square lattice.
Assuming the scattered particles follow the same lattice sym-
metry, we describe any single 2D classical collision withNext, let us perform in Eq(4.1) a first-order Taylor series
three parametersT(R,L) which are the forward, backward, expansion around the poink,fy,t). After some simplifica-
and lateral scattering probabilities, respectively. Conservations we have that
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9P, R L 2AX 9P, Individually, Egs.(4.58 and(4.5¢ express the nonconserva-
—— == 357 (P1=Py)+ = (P3s+P;,—2P1)-T —— —— tion of mass moving along each direction. Every direction of
ot At At At ox . ! .
motion has lateral scatterings and therefore there is a lateral
Ax 9P; Ay dP; Ax 9P, Ay iP, flux of particles. As we expected in an isotropic solid, the
L - At ox . At W‘ At ox At W loss of mass in any direction becomes exactly the gain of

mass for the perpendicular direction, so the total mass in the
process is conserved. Indeed, adding E453a and (4.50

we have the total conservation of mass,
As we can clearly see from E4.2), analogously to the

1D case, for arbitrary values of (R,L), the continuum limit I pxtpy) 9y
(Ax=Ay=At—0) keepingAx/At=Ay/At=const does not T+ X
exist. However, we do have a continuum limit in the case of
the 2D weak-scattering limi2D-WSL), where, besidea x
=Ay=At—0, we define a constant speedand two con- exhibit the clearest distinction of the 2D-WSL model com-
stant timesfg and 6, such that R,L)—(0,0), in such a way pared with the 1D-WSL case. Notice that even if we still
that have the partial time derivative of the current its@lfis is
the hallmark of mesoscopic diffusignFick’s law in 2D is
not satisfied. In Egs(4.5b and (4.50 we do not have the
gradient of thetotal density p,+p,). Therefore Eqs(4.50
and(4.5d describe an anomalous diffusion process and con-
o o sequently may be regarded as anomalous Maxwell-Cattaneo
Here, g and 4, are two characteristic relaxation times of the equations. This fact has deep consequences in the diffusion
solid. The times are associated with the backward and Iater@lquaﬁon as we shall see next. Attempting to obtain the te-
scatterings, respectively. In this 2D-WSL, E4.2), the first legrapher’s equation, we next eliminate in EG&5) the two
of the set describing classical mesoscopic diffusion, becomegrrent components, andJ, and we arrive at the following

+O(A?/At). (4.2

2y

TS (4.6)

Finally, Eqgs.(4.5b and (4.5d for the diffusive currents

2Ax/At=2Ay/At=c, R/IAt=1/(26R),

L/At=1/(26,), T—1. 4.3

o ¢ (P Py 1 (PytPs—2Py) aaten

——+Cc——=—(P1—Py) 50— - -

at IX toe 20g 30 ! 20, i ‘92(px+Py) n i I pxtpy) _ asz n (?Zpy 4.7
(4.43 2 a2 D at  ox%  ay?' '

Analogously, the other three continuum equations arisingyhere the diffusion coefficierd =c26y is the same as in the
from Eq. (3.1) in the 2D-WSL are given by 1D case. This striking 2D-PRW result, trivially extended to
3D-PRW, shows very clearly that mesoscopic diffusion in

‘7_P2_C [?_PZZ +(P,—P,) i+(P +P,—2P,) i 2D and 3Dis notdescribed by the telegrapher’s equation. In
ot 2 b 20 8 220, fact, Eq.(4.7) is not even a closed equation for the total
(44D density (,+p,), and it is by itself useless. In this PRW
model, in 2D and 3D, one cannot bypass the evaluation of
(?_P3+ IPs p._p i+ P+ P, — 2P 1 the diffusive currentl(r t) in the process of getting the me-
at Ty T (Ps=Pa) 20g (P11 Po=2Ps) 26, soscopic diffusion solution fgu(r,t). What is very important
(4.49  to realize is that the set of four simultaneous equati@ns)

5 o L L for (py,py,Jdx,Jy) become now the fundamental mesoscopic
d d diffusion equations for 2D lattices.
a—t“—ca—;:ﬂpa—m)2—0R+(P1+P2—2P4)2—0L. a

(4.49 V. THE ANOMALOUS MAXWELL-CATTANEO

Analogously to the 1D case, we will rewrite Eqg.4) in

EQUATION

The above continuum limit has the undesirable property
of being only valid in the 2D-WSL, where the scattering
coefficients satisfy the propertied ,R,L)~(1,0,0. Due to

terms of densitiep,=P,+P,,p,=P;+P,, and their asso-
ciated currentd,=c(P,—P,),J,=c(P;—P,). Adding and
subtracting Eqsi4.49, (4.4b), (4.49, and(4.4d we find that

this weak scattering, the solution of E@..5 describes, for

dpy  Idy 1 an initial cluster of particles moving in the same direction, a
WJF X —(px=py) 0.’ (453 pallistic motion leaving behind a cloud of particles moving
backwards and sideways. For short times, the WSL solution
Apy 4, resembles more the sublimation of a comet than a diffusion
J,=—c?%0g R (45D  process.
Next, we derive Fick’s law without taking the WSL. If we
Py want to know the diffusion coefficient for arbitrary values of
Y Y (py—py) —, (4.50 (T,R,L), we restrict ourselves to the discrete case. Keeping
gt ay o constant the discrete values ak=Ay=1/2, wherel is the
square lattice constant, and keeping the speed definition
3= — 26, py Iy (4.50 c=2Ax/At=2Ay/At, consider in Eq(3.1) the first equa-

tion for P,; after a Taylor series expansion and keeping only
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the first-order term we may rewrite it as
P (Pi=Py) 4 (PytPy—2P)) o To T8
St = (P1=P2) 37 (P3+Py=2Py) fo—-Tc—=
e/ Ps;+P i P;—P 5.1
5 ax (PstPO=5 5 (Ps=Po. (5

From Eq.(3.1), the second equation fd?, can be simi-
larly obtained, namely

O (P1=Py) 4 (Pyt Py—2Py) — +Tc 2
i = T(P1=Py) e+ (PstPy=2Py) o +TCc—-
e/ Ps;+P e/ P;—P 5.2
+ 5 5 (PstPa) 7@( 3~ Pa). (5.2

Subtracting Eq(5.2) from Eq. (5.1) and substituting the
probabilities ¢,,P,,P5,P,) for the densities and currents
(px:pyJdx,Jdy) we get after some simplifications that

1 c2At oL At 9 ;
X~ T 3R¥ 2L ax L Px T eyl SRaor g
(5.3

In a similar way, from the third and fourth equations in
Eq. (3.1), we find that

c?At T il At aJ
2R+ 2L gy LTy Eed = spior gy
(5.3b

y

Equations(5.3), valid for arbitrary values of T,R,L),
show the exact problem with 2[also 3D classical mesos-

copic diffusion. As long as we have some inertial memory

(T+#L), Fick's equation is not valid. What we have is an

anomalous diffusion process with a tensor diffusion coeffi-

cientD. We may define two diffusion coefficients: a parallel
coefficientD, and a perpendicular coefficiebx, , where

_ CPAtL
LT 2R+2L

B C2AtT
I~ 2R+2L"

(5.9

With this notation we can write the 2D anomalous

Maxwell-Cattaneo equation as

J J
Jx:_a (Dypxt Dpr)_GZDE\]xa (5.59

1% J
Jy:_E(DuPy"’ DLPX)_02DEJyy (5.5
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where

At D, D,
b20=oR¥2L T AL (659
is the relaxation time associated to a 2D mesoscopic diffu-
sion process. It is clear from E@5.5) that sinceT#L the
probabilities of finding the walker at a certain point in the
lattice are not symmetrical. This explains why the/ sym-
metry of the telegrapher’s equation is no longer valid in the
2D continuous case, where in the 2D-WSL we certainly have
(T~1)#(L~0). Clearly, this result is easily extrapolated to
the 3D case.

VI. THE 3D-WSL RESULTS

The above 2D results can be trivially extended to the 3D
case. For a simple cubic lattice, the three coefficients
(T,R,L) satisfy the conditiom +R+4L=1. In this 3D case
we have six probability densitieB; (i=1,...,6, and the
continuous result in the 3D-WSL for the apparent telegra-
pher’'s equation is

1 az(px+py+pz) 1 a(Px+py+pz) asz &zpy
= 2 5 =21t o2
c ot D ot X ay
(?sz
22 (6.1)

whereD=c?0.

For arbitrary values of T,R,L) the discrete case gives,
for the 3D diffusive currenfi(r,t), an anomalous Maxwell-
Cattaneo equation where one typical compongntiooks
like

d 1)
‘]x:_or,_x[DIIPx+DL(Py+Pz)]_03DﬁJX1 (6.2

and the 3D diffusion coefficient® and relaxation timed,;p
are found to be

o c2AtL
L7 2R+4L"

. C2AtT
I~ 2R+4L"

At

930= SR 4L
6.3

From Eg.(6.2 we see that as long as we can distinguish
the forward from the lateral scattering coefficients, the sym-
metry x-y-z for diffusion will be broken.

As a final conclusion, the inertial memory, which makes
valid in 1D the telegrapher’s equation, is the same property
which prevents it in 2D and 3D.
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