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Nonvalidity of the telegrapher’s diffusion equation in two and three dimensions
for crystalline solids

Salvador Godoy* and L. S. Garcı´a-Colı́n
Departamento de Fı´sica, Universidad Auto´noma Metropolitana, Iztapalapa, Me´xico, Distrito Federal 09340, Mexico

~Received 9 July 1996!

We use a classical analog of two-dimensional~2D! and 3D quantumS-matrix scattering theory to study
classical mesoscopic diffusion in isotropic, crystalline, solids. The individual collisions include transmission,
reflection, and lateral scattering probabilities. The resulting stochastic process is a second-order Markov pro-
cess in phase space, which is known in the literature as 2D~3D! persistent random walk. In striking contrast
with the 1D case, in the continuum limit, the 2D and 3D total densitiesdo notsatisfy the telegrapher’s diffusion
equation. We explain this fact deriving the anomalous Maxwell-Cattaneo equation in the case of discrete
diffusion processes. We find that inertial memory, giving the forward scattering a preferential direction, breaks
the x-y symmetry.@S1063-651X~97!06301-0#

PACS number~s!: 05.40.1j, 05.70.Ln, 03.65.Sq
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I. INTRODUCTION

The so-called telegrapher’s equation has recently bee
subject of many studies concerning transport propertie
fluids and solids. Although well known since the last centu
in electrodynamics@1#, the use of the telegrapher’s equatio
in transport theory dates scarcely from 1951, after its der
tion by Goldstein@2# using a stochastic process called t
one-dimensional persistent random walk~1D-PRW!. Its as-
sessment as a transport equation was nicely discusse
Weymann@3# and its applications to a wide variety of prob
lems have been recently reviewed by a number of auth
@4–6#. In particular, Masoliveret al. @7,8# pointed out that in
two dimensions a persistent random walk describes a mo
which in the continuum limit does not obey two-dimension
the ~2D! telegrapher’s equation. Furthermore, they conj
tured that it is not possible to derive the telegrapher’s eq
tion in 2D ~or in 3D! by following Goldstein’s procedure
starting from a persistent random walk and passing to
continuum limit.

In this paper we explicitly wish to prove this last asserti
and furthermore to clearly point out why the Fickian diff
sion ceases to hold true in 2D and 3D. In fact, since
probabilities of making a forward and sideways transition
different with respect to a chosen direction, the probabilit
of finding the walker at a certain point in the lattice are n
symmetrical. The continuum limit of 2D~3D! persistent ran-
dom walk leads to a diffusive type equation very much li
the one derived by Masoliveret al. @7,8#.

II. THE 1D-PRW MODEL

Since the pioneering work by Goldstein@2# we know that
1D mesoscopic diffusion equations can be obtained usin
one-dimensional persistent random walk@4#. Among the dif-
ferent 1D-PRW models present in the literature there is
called quantum random walk~QRW! which is derived di-
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rectly from the 1D quantumS-matrix scattering theory
@9,10#. Scattering with energies below~tunneling! and above
the potential barrier are described indistinctly with the tra
mission and reflection coefficients (T,R).

The QRW is a coherent~having interference! diffusive
process, where elastic scatterings of wave packets, of
stant ~average! energy, against a crystalline lattice are co
sidered. In a recent article@11# it was proved that if a time
average is taken on the quantum probabilities describe
QRW, the quantum interference contributions can be
glected, and a set of incoherent~classical! 1D-PRW equa-
tions are obtained. This quantum-derived incoherent proc
describes a succession of 1D classical scatterings in a la
where all particles incident upon any potential barrier a
scattered with forward~transmission! and backward~reflec-
tion! probabilities (T,R), respectively. Conservation of pa
ticles demands thatT1R51. Usually T.R, and this ex-
presses the inertial memory of particles under scattering

Assuming the particles to be described only at the m
valleys between potential barriers, the quantum-derived c
sical 1D-PRW equations may be rewritten relating the cl
sical incoming probabilitiesP1(x,t) and P2(x11,t) with
the corresponding outgoing onesP1(x11,t11) and
P2(x,t11). The subscripts in the probabilities denote t
direction of motion~15right, 25left!. The 1D-PRW equa-
tions become

S P1~x11,t11!

P2~x,t11! D5S TR R
TD S P1~x,t !

P2~x11,t ! D . ~2.1!

Equation~2.1! describes a classical process where all p
ticles have the same average speedc[Dx/Dt. Having con-
stant energy, in 1D the velocity has only two values:6c.
The effect of elastic collisions is simply to change their d
rections of motion.P1(x,t) and P2(x,t) describe the joint
probability of finding the particle at positionx at timet with
positive and negative velocities, respectively. Thus the 1
PRW process~2.1! describes in phase space a Markovi
random walk withinternal degrees of freedom. Each indi-
vidual probabilityP1 andP2 in Eq. ~2.1! is hence asecond-
order Markov process@4#.
2127 © 1997 The American Physical Society
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In Eq. ~2.1!, for arbitrary values ofR and T, the con-
tinuum limit (Dx,Dt)→~0,0!, such thatDx/Dt[c is kept
constant,does not exist@4#. However, the continuum limit
does exist in the particular case of the weak-scattering l
~WSL! where, besides (Dx,Dt)→~0,0! with Dx/Dt[c, the
coefficients (R,T) have to satisfy the supplementa
conditions: R[Dt/2u;0, andT512R;1, whereu is a
constant relaxation time characteristic of the solid@4#.

The corresponding equations in the 1D-WSL are

]P1

]t
1c

]P1

]x
5

1

2u
~P22P1!, ~2.2a!

]P2

]t
2 c

]P2

]x
5

1

2u
~P12P2!. ~2.2b!

The two equations~2.2! may be rewritten in terms of two
new functions, the densityr(x,t)[P1(x,t)1P2(x,t) and its
associated currentJ(x,t)/c[P1(x,t)2P2(x,t); they are
found to be

]r

]t
1

]J

]x
50, J52D

]r

]x
2u

]J

]t
, ~2.3!

whereD[c2u is the diffusion coefficient. Equation~2.3a!
describes the conservation of mass, and Eq.~2.3b! the
Maxwell-Cattaneo equation@12#. After eliminating the cur-
rent J in Eqs.~2.3! we get a closed equation for the 1D de
sity, the telegrapher’s equation

1

c2
]2r

]t2
1

1

D

]r

]t
5

]2r

]x2
. ~2.4!

Likewise, if one does not choose to assume that the ran
walker moves at constant speed, still further types of evo
tion equations are possible@13#.

In the next sections we will prove, using the classic
analog of the 2D~and 3D! quantumS-matrix scattering
theory, that in 2D~and 3D! the resulting equations are~i! a
2D ~3D! PRW stochastic process, and~ii ! in the WSL, in
striking contrast with the 1D case, the diffusion equation
the densityr(x,y,t) is not given by the 2D~3D! version of
Eq. ~2.4!.

That is, at least for our classicalS-matrix scattering mode
of diffusion, the telegrapher’s equation analogous to
~2.4! is not the correct equation for describing 2D and 3
classical mesoscopic diffusion.

Finally, notice that for arbitrary values of (T,R) and
keepingDx2/Dt5const~the same limit which takes the usu
random walk into a parabolic equation!, we may also take in
Eq. ~2.1! the continuous limit. However in doing so we a
rive, the same as in the parabolic equation, at a diffus
process with an infinite propagation speed for diffusion. T
is an unphysical result.

III. DIFFUSION IN A 2D SQUARE LATTICE

To begin with, consider a 2D, isotropic, square lattic
Assuming the scattered particles follow the same lattice s
metry, we describe any single 2D classical collision w
three parameters (T,R,L) which are the forward, backward
and lateral scattering probabilities, respectively. Conse
it

m
-

l

r

.

n
s

.
-

a-

tion of particles demandsT1R12L51.
In a square lattice we have four probabili

densities: P1(x,y,t), P2(x,y,t), P3(x,y,t), andP4(x,y,t),
where the subscripts denote the directions of motion~1
5right, 25left, 35up, 45down!.

In a single 2D classical scattering process, we can find
inspection from Fig. 1 the most general relation betwe
input and output probability densities, namely,

S P1~x11,y,t11!

P2~x21,y,t11!

P3~x,y11,t11!

P4~x,y21,t11!
D 5S T R L L

R T L L

L L T R

L L R T

D S P1~x21,y,t !
P2~x11,y,t !
P3~x,y21,t !
P4~x,y11,t !

D .
~3.1!

Notice that in the model described by Eq.~3.1!, since we
have elastic scattering and every scattering process ha
same mean free path, made of two displacements each o
the same size (uDxu5uDyu) for input and output respec
tively, this implies that the mean collision timeDt is the
same in every scattering process. From a statistical poin
view, Eq. ~3.1! describes a stochastic process called 2
persistent-random-walk~2D-PRW!. Notice that this is a
second-orderMarkov process since at any time one needs
have two pieces of information, the position and direction
travel. The symmetry of the transition matrix reflects t
isotropy of the solid. Eq.~3.1! represents a set of recursiv
equations for Pi ~i51,2,3,4! whose solution depend
strongly on the initial and boundary conditions.

IV. THE 2D WEAK-SCATTERING LIMIT

In order to get the continuum limit of Eq.~3.1! consider,
as an example, the first equation of the set, namely

P1~x,y,t11!5TP1~x22,y,t !1RP2~x,y,t !

1LP3~x21,y21,t !1LP4~x21,y11,t !.

~4.1!

Next, let us perform in Eq.~4.1! a first-order Taylor series
expansion around the point (x,y,t). After some simplifica-
tions we have that

FIG. 1. ~a! Input at time (t) and ~b! output at time~t11! for a
2D square lattice.
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]P1

]t
52

R

Dt
~P12P2!1

L

Dt
~P31P422P1!2T

2Dx

Dt

]P1

]x

1LS 2
Dx

Dt

]P3

]x
2

Dy

Dt

]P3

]y
2

Dx

Dt

]P4

]x
1

Dy

Dt

]P4

]y D
1O~D2/Dt !. ~4.2!

As we can clearly see from Eq.~4.2!, analogously to the
1D case, for arbitrary values of (T,R,L), the continuum limit
~Dx5Dy5Dt→0! keepingDx/Dt5Dy/Dt5const does not
exist. However, we do have a continuum limit in the case
the 2D weak-scattering limit~2D-WSL!, where, besidesDx
5Dy5Dt→0, we define a constant speedc and two con-
stant timesuR anduL such that (R,L)→~0,0!, in such a way
that

2Dx/Dt52Dy/Dt[c, R/Dt[1/~2uR!,

L/Dt[1/~2uL!, T→1. ~4.3!

Here,uR anduL are two characteristic relaxation times of th
solid. The times are associated with the backward and lat
scatterings, respectively. In this 2D-WSL, Eq.~4.2!, the first
of the set describing classical mesoscopic diffusion, beco

]P1

]t
1c

]P1

]x
52~P12P2!

1

2uR
1~P31P422P1!

1

2uL
.

~4.4a!

Analogously, the other three continuum equations aris
from Eq. ~3.1! in the 2D-WSL are given by

]P2

]t
2c

]P2

]x
51~P12P2!

1

2uR
1~P31P422P2!

1

2uL
,

~4.4b!

]P3

]t
1c

]P3

]y
52~P32P4!

1

2uR
1~P11P222P3!

1

2uL
,

~4.4c!

]P4

]t
2c

]P4

]y
51~P32P4!

1

2uR
1~P11P222P4!

1

2uL
.

~4.4d!

Analogously to the 1D case, we will rewrite Eqs.~4.4! in
terms of densitiesrx[P11P2 ,ry[P31P4 , and their asso-
ciated currentsJx[c(P12P2),Jy[c(P32P4). Adding and
subtracting Eqs.~4.4a!, ~4.4b!, ~4.4c!, and~4.4d! we find that

]rx
]t

1
]Jx
]x

52~rx2ry!
1

uL
, ~4.5a!

Jx52c2uR
]rx
]x

2uR
]Jx
]t

, ~4.5b!

]ry

]t
1

]Jy
]y

51~rx2ry!
1

uL
, ~4.5c!

Jy52c2uR
]ry

]y
2uR

]Jy
]t

. ~4.5d!
f

ral

es

g

Individually, Eqs.~4.5a! and~4.5c! express the nonconserva
tion of mass moving along each direction. Every direction
motion has lateral scatterings and therefore there is a la
flux of particles. As we expected in an isotropic solid, t
loss of mass in any direction becomes exactly the gain
mass for the perpendicular direction, so the total mass in
process is conserved. Indeed, adding Eqs.~4.5a! and ~4.5c!
we have the total conservation of mass,

]~rx1ry!

]t
1

]Jx
]x

1
]Jy
]y

50. ~4.6!

Finally, Eqs.~4.5b! and ~4.5d! for the diffusive currents
exhibit the clearest distinction of the 2D-WSL model com
pared with the 1D-WSL case. Notice that even if we s
have the partial time derivative of the current itself~this is
the hallmark of mesoscopic diffusion!, Fick’s law in 2D is
not satisfied. In Eqs.~4.5b! and ~4.5d! we do not have the
gradient of thetotal density (rx1ry). Therefore Eqs.~4.5b!
and~4.5d! describe an anomalous diffusion process and c
sequently may be regarded as anomalous Maxwell-Catta
equations. This fact has deep consequences in the diffu
equation as we shall see next. Attempting to obtain the
legrapher’s equation, we next eliminate in Eqs.~4.5! the two
current componentsJx andJy and we arrive at the following
equation:

1

c2
]2~rx1ry!

]t2
1

1

D

]~rx1ry!

]t
5

]2rx
]x2

1
]2ry

]y2
, ~4.7!

where the diffusion coefficientD[c2uR is the same as in the
1D case. This striking 2D-PRW result, trivially extended
3D-PRW, shows very clearly that mesoscopic diffusion
2D and 3Dis notdescribed by the telegrapher’s equation.
fact, Eq. ~4.7! is not even a closed equation for the tot
density (rx1ry), and it is by itself useless. In this PRW
model, in 2D and 3D, one cannot bypass the evaluation
the diffusive currentJ~r ,t! in the process of getting the me
soscopic diffusion solution forr~r ,t!. What is very important
to realize is that the set of four simultaneous equations~4.5!
for (rx ,ry ,Jx ,Jy) become now the fundamental mesosco
diffusion equations for 2D lattices.

V. THE ANOMALOUS MAXWELL-CATTANEO
EQUATION

The above continuum limit has the undesirable prope
of being only valid in the 2D-WSL, where the scatterin
coefficients satisfy the properties (T,R,L);~1,0,0!. Due to
this weak scattering, the solution of Eq.~4.5! describes, for
an initial cluster of particles moving in the same direction
ballistic motion leaving behind a cloud of particles movin
backwards and sideways. For short times, the WSL solu
resembles more the sublimation of a comet than a diffus
process.

Next, we derive Fick’s law without taking the WSL. If w
want to know the diffusion coefficient for arbitrary values
(T,R,L), we restrict ourselves to the discrete case. Keep
constant the discrete values ofDx5Dy5 l /2, wherel is the
square lattice constant, and keeping the speed defin
c[2Dx/Dt52Dy/Dt, consider in Eq.~3.1! the first equa-
tion for P1; after a Taylor series expansion and keeping o
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the first-order term we may rewrite it as

]P1

]t
52~P12P2!

R

Dt
1~P31P422P1!

L

Dt
2Tc

]P1

]x

2
Lc

2

]

]x
~P31P4!2

Lc

2

]

]y
~P32P4!. ~5.1!

From Eq.~3.1!, the second equation forP2 can be simi-
larly obtained, namely

]P2

]t
51~P12P2!

R

Dt
1~P31P422P2!

L

Dt
1Tc

]P2

]x

1
Lc

2

]

]x
~P31P4!2

Lc

2

]

]y
~P32P4!. ~5.2!

Subtracting Eq.~5.2! from Eq. ~5.1! and substituting the
probabilities (P1 ,P2 ,P3 ,P4) for the densities and current
(rx ,ry ,Jx ,Jy) we get after some simplifications that

Jx52
c2Dt

2R12L

]

]x
@Trx1Lry#2

Dt

2R12L

]

]t
Jx .

~5.3a!

In a similar way, from the third and fourth equations
Eq. ~3.1!, we find that

Jy52
c2Dt

2R12L

]

]y
@Try1Lrx#2

Dt

2R12L

]

]t
Jy .

~5.3b!

Equations~5.3!, valid for arbitrary values of (T,R,L),
show the exact problem with 2D~also 3D! classical mesos
copic diffusion. As long as we have some inertial memo
(TÞL), Fick’s equation is not valid. What we have is a
anomalous diffusion process with a tensor diffusion coe
cientD. We may define two diffusion coefficients: a parall
coefficientD i and a perpendicular coefficientD' , where

D i[
c2DtT

2R12L
, D'[

c2DtL

2R12L
. ~5.4!

With this notation we can write the 2D anomalo
Maxwell-Cattaneo equation as

Jx52
]

]x
~D irx1D'ry!2u2D

]

]t
Jx , ~5.5a!

Jy52
]

]y
~D iry1D'rx!2u2D

]

]t
Jy , ~5.5b!
y

-

where

u2D[
Dt

2R12L
5

D i

c2T
5

D'

c2L
~5.5c!

is the relaxation time associated to a 2D mesoscopic di
sion process. It is clear from Eq.~5.5! that sinceTÞL the
probabilities of finding the walker at a certain point in th
lattice are not symmetrical. This explains why thex-y sym-
metry of the telegrapher’s equation is no longer valid in t
2D continuous case, where in the 2D-WSL we certainly ha
(T;1)Þ(L;0). Clearly, this result is easily extrapolated
the 3D case.

VI. THE 3D-WSL RESULTS

The above 2D results can be trivially extended to the
case. For a simple cubic lattice, the three coefficie
(T,R,L) satisfy the conditionT1R14L51. In this 3D case
we have six probability densitiesPi ~i51, . . . ,6!, and the
continuous result in the 3D-WSL for the apparent teleg
pher’s equation is

1

c2
]2~rx1ry1rz!

]t2
1

1

D

]~rx1ry1rz!

]t
5

]2rx
]x2

1
]2ry

]y2

1
]2rz
]z2

, ~6.1!

whereD[c2uR .
For arbitrary values of (T,R,L) the discrete case gives

for the 3D diffusive currentJ~r ,t!, an anomalous Maxwell-
Cattaneo equation where one typical componentJx looks
like

Jx52
]

]x
@D irx1D'~ry1rz!#2u3D

]

]t
Jx , ~6.2!

and the 3D diffusion coefficientsD and relaxation timeu3D
are found to be

D i[
c2DtT

2R14L
, D'[

c2DtL

2R14L
, u3D[

Dt

2R14L
.

~6.3!

From Eq.~6.2! we see that as long as we can distingu
the forward from the lateral scattering coefficients, the sy
metry x-y-z for diffusion will be broken.

As a final conclusion, the inertial memory, which mak
valid in 1D the telegrapher’s equation, is the same prope
which prevents it in 2D and 3D.
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